Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Free Radic Res ; : 1-17, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38613520

RESUMEN

It was demonstrated that ginsenosides exert anti-convulsive potentials and interleukin-6 (IL-6) is protective from excitotoxicity induced by kainate (KA), a model of temporal lobe epilepsy. Ginsenosides-mediated mitochondrial recovery is essential for attenuating KA-induced neurotoxicity, however, little is known about the effects of ginsenoside Re (GRe), one of the major ginsenosides. In this study, GRe significantly attenuated KA-induced seizures in mice. KA-induced redox changes were more evident in mitochondrial fraction than in cytosolic fraction in the hippocampus of mice. GRe significantly attenuated KA-induced mitochondrial oxidative stress (i.e. increases in reactive oxygen species, 4-hydroxynonenal, and protein carbonyl) and mitochondrial dysfunction (i.e. the increase in intra-mitochondrial Ca2+ and the decrease in mitochondrial membrane potential). GRe or mitochondrial protectant cyclosporin A restored phospho-signal transducers and activators of transcription 3 (STAT3) and IL-6 levels reduced by KA, and the effects of GRe were reversed by the JAK2 inhibitor AG490 and the mitochondrial toxin 3-nitropropionic acid (3-NP). Thus, we used IL-6 knockout (KO) mice to investigate whether the interaction between STAT3 and IL-6 is involved in the GRe effects. Importantly, KA-induced reduction of manganese superoxide dismutase (SOD-2) levels and neurodegeneration (i.e. astroglial inhibition, microglial activation, and neuronal loss) were more prominent in IL-6 KO than in wild-type (WT) mice. These KA-induced detrimental effects were attenuated by GRe in WT and, unexpectedly, IL-6 KO mice, which were counteracted by AG490 and 3-NP. Our results suggest that GRe attenuates KA-induced neurodegeneration via modulating mitochondrial oxidative burden, mitochondrial dysfunction, and STAT3 signaling in mice.

2.
J Ginseng Res ; 47(4): 561-571, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37397414

RESUMEN

Background: Escalating evidence shows that ginseng possesses an antiaging potential with cognitive enhancing activity. As mountain cultivated ginseng (MCG) is cultivated without agricultural chemicals, MCG has emerged as a popular herb medicine. However, little is known about the MCG-mediated pharmacological mechanism on brain aging. Methods: As we demonstrated that glutathione peroxidase (GPx) is important for enhancing memory function in the animal model of aging, we investigated the role of MCG as a GPx inducer using GPx-1 (a major type of GPx) knockout (KO) mice. We assessed whether MCG modulates redox and cholinergic parameters, and memory function in aged GPx-1 knockout KOmice. Results: Redox burden of aged GPx-1 KO mice was more evident than that of aged wild-type (WT) mice. Alteration of Nrf2 DNA binding activity appeared to be more evident than that of NFκB DNA binding activity in aged GPx-1 KO mice. Alteration in choline acetyltransferase (ChAT) activity was more evident than that in acetylcholine esterase activity. MCG significantly attenuated reductions in Nrf2 system and ChAT level. MCG significantly enhanced the co-localization of Nrf2-immunoreactivity and ChAT-immunoreactivity in the same cell population. Nrf2 inhibitor brusatol significantly counteracted MCG-mediated up-regulation in ChAT level and ChAT inhibition (by k252a) significantly reduced ERK phosphorylation by MCG, suggesting that MCG might require signal cascade of Nrf2/ChAT/ERK to enhance cognition. Conclusion: GPx-1 depletion might be a prerequisite for cognitive impairment in aged animals. MCG-mediated cognition enhancement might be associated with the activations of Nrf2, ChAT, and ERK signaling cascade.

3.
Food Chem Toxicol ; 178: 113869, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37308051

RESUMEN

Although the anticonvulsant effects of ginsenosides are recognized, little is known about their effects on the convulsive behaviors induced by the activation of L-type Ca2+ channels. Here, we investigated whether ginsenoside Re (GRe) modulates excitotoxicity induced by the L-type Ca2+ channel activator Bay k-8644. GRe significantly attenuated Bay k-8644-induced convulsive behaviors and hippocampal oxidative stress in mice. GRe-mediated antioxidant potential was more pronounced in the mitochondrial fraction than cytosolic fraction. As L-type Ca2+ channels are thought to be targets of protein kinase C (PKC), we investigated the role of PKC under excitotoxic conditions. GRe attenuated Bay k-8644-induced mitochondrial dysfunction, PKCδ activation, and neuronal loss. The PKCδ inhibition and neuroprotection mediated by GRe were comparable to those by the ROS inhibitor N-acetylcysteine, the mitochondrial protectant cyclosporin A, the microglial inhibitor minocycline, or the PKCδ inhibitor rottlerin. Consistently, the GRe-mediated PKCδ inhibition and neuroprotection were counteracted by the mitochondrial toxin 3-nitropropionic acid or the PKC activator bryostatin-1. GRe treatment did not have additional effects on PKCδ gene knockout-mediated neuroprotection, suggesting that PKCδ is a molecular target of GRe. Collectively, our results suggest that GRe-mediated anticonvulsive/neuroprotective effects require the attenuation of mitochondrial dysfunction and altered redox status and inactivation of PKCδ.


Asunto(s)
Ginsenósidos , Metanfetamina , Animales , Ratones , Antioxidantes/farmacología , Antioxidantes/metabolismo , Bahías , Ginsenósidos/farmacología , Ginsenósidos/metabolismo , Hipocampo , Metanfetamina/toxicidad , Ratones Noqueados , Mitocondrias , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Convulsiones/prevención & control , Ácido 3-piridinacarboxílico, 1,4-dihidro-2,6-dimetil-5-nitro-4-(2-(trifluorometil)fenil)-, Éster Metílico
4.
Food Chem Toxicol ; 173: 113627, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36682417

RESUMEN

Ginsenoside Re (GRe) upregulates anti-aging klotho by mainly upregulating glutathione peroxidase-1 (GPx-1). However, the anti-aging mechanism of GPx-1 remains elusive. Here we investigated whether the GRe-mediated upregulation of GPx-1 modulates oxidative and proinflammatory insults. GPx-1 gene depletion altered redox homeostasis and platelet-activating factor receptor (PAFR) and nuclear factor kappa B (NFκB) expression, whereas the genetic overexpression of GPx-1 or GRe mitigated this phenomenon in aged mice. Importantly, the NFκB inhibitor pyrrolidine dithiocarbamate (PDTC) did not affect PAFR expression, while PAFR inhibition (i.e., PAFR knockout or ginkgolide B) significantly attenuated NFκB nuclear translocation, suggesting that PAFR could be an upstream molecule for NFκB activation. Iba-1-labeled microgliosis was more underlined in aged GPx-1 KO than in aged WT mice. Triple-labeling immunocytochemistry showed that PAFR and NFκB immunoreactivities were co-localized in Iba-1-positive populations in aged mice, indicating that microglia released these proteins. GRe inhibited triple-labeled immunoreactivity. The microglial inhibitor minocycline attenuated aging-related reduction in phospho-ERK. The effect of minocycline was comparable with that of GRe. GRe, ginkgolide B, PDTC, or minocycline also attenuated aging-evoked memory impairments. Therefore, GRe ameliorated aging-associated memory impairments in the absence of GPx-1 by inactivating oxidative insult, PAFR, NFkB, and microgliosis.


Asunto(s)
Glutatión Peroxidasa GPX1 , FN-kappa B , Ratones , Animales , FN-kappa B/metabolismo , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Minociclina/metabolismo , Minociclina/farmacología , Ratones Noqueados , Hipocampo
5.
Drug Chem Toxicol ; 46(2): 281-296, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35707918

RESUMEN

It has been recognized that serotonergic blocker showed serious side effects, and that ginsenoside modulated serotonergic system with the safety. However, the effects of ginsenoside on serotonergic impairments remain to be clarified. Thus, we investigated ginsenoside Re (GRe), a major bioactive component in the mountain-cultivated ginseng on (±)-8-hydroxy-dipropylaminotetralin (8-OH-DPAT), a 5-HT1A receptor agonist. In the present study, we observed that the treatment with GRe resulted in significant inhibition of protein kinase C δ (PKCδ) phosphorylation induced by the 5-HT1A receptor agonist (±)-8-hydroxy-dipropylaminotetralin (8-OH-DPAT) in the hypothalamus of the wild-type (WT) mice. The inhibition of GRe was comparable with that of the PKCδ inhibitor rottlerin or the 5-HT1A receptor antagonist WAY100635 (WAY). 8-OH-DPAT-induced significant reduction in nuclear factor erythroid-2-related factor 2 (Nrf2)-related system (i.e., Nrf2 DNA binding activity, γ-glutamylcysteine ligase modifier (GCLm) and γ-glutamylcysteine ligase catalytic (GCLc) mRNA expression, and glutathione (GSH)/oxidized glutathione (GSSG) ratio) was significantly attenuated by GRe, rottlerin, or WAY in WT mice. However, PKCδ gene knockout significantly protected the Nrf2-dependent system from 8-OH-DPAT insult in mice. Increases in 5-hydroxytryptophan (5-HT) turnover rate, overall serotonergic behavioral score, and hypothermia induced by 8-OH-DPAT were significantly attenuated by GRe, rottlerin, or WAY in WT mice. Consistently, PKCδ gene knockout significantly attenuated these parameters in mice. However, GRe or WAY did not provide any additional positive effects on the serotonergic protective potential mediated by PKCδ gene knockout in mice. Therefore, our results suggest that PKCδ is an important mediator for GRe-mediated protective activity against serotonergic impairments/oxidative burden caused by the 5-HT1A receptor.


Asunto(s)
Ginsenósidos , Ratones , Animales , 8-Hidroxi-2-(di-n-propilamino)tetralin/farmacología , Ginsenósidos/farmacología , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Receptor de Serotonina 5-HT1A/genética , Glutatión , Disulfuro de Glutatión , Antagonistas de la Serotonina , Ligasas
6.
Free Radic Biol Med ; 189: 2-19, 2022 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-35840016

RESUMEN

Ginseng is known to possess anti-aging potential. Klotho mutant mice exhibit phenotypes that resemble the phenotype of the human aging process. Similar to Klotho deficient mice, patients with chronic kidney disease (CKD) suffer vascular damage and cognitive impairment, which might upregulate the angiotensin II AT1 receptor. Since AT1 receptor expression was more pronounced than endothelin ET-1 expression in the hippocampus of aged Klotho deficient (±) mice, we focused on the AT1 receptor in this study. Ginsenoside Re (GRe), but not ginsenoside Rb1 (GRb1), significantly attenuated the increase in AT1 receptor expression in aged Klotho deficient mice. Both GRe and the AT1 receptor antagonist losartan failed to attenuate the decrease in phosphorylation of JAK2/STAT3 in aged Klotho deficient (±) mice but significantly activated nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated signaling. Both GRe and losartan attenuated the increased NADPH oxidase (NOX) activity and reactive oxygen species (ROS) in aged Klotho deficient mice. Furthermore, of all the antioxidant enzymes, GRe significantly increased glutathione peroxidase (GPx) activity. GRe significantly attenuated the reduced phosphorylation of ERK and CREB in GPx-1 knockout mice; however, genetic overexpression of GPx-1 did not significantly affect them in aged mice. Klotho-, Nrf2-, and GPx-1-immunoreactivities were co-localized in the same cells of the hippocampus in aged Klotho wild-type mice. Both the GPx inhibitor mercaptosuccinate and Nrf2 inhibitor brusatol counteracted the effects of GRe on all neurobehavioral impairments in aged Klotho deficient (±) mice. Our results suggest that GRe attenuates all alterations, such as AT1 receptor expression, NOX-, ROS-, and GPx-levels, and cognitive dysfunction in aged Klotho deficient (±) mice via upregulation of Nrf2/GPx-1/ERK/CREB signaling.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Receptor de Angiotensina Tipo 1 , Animales , Ratones , Angiotensina II , Antioxidantes/farmacología , Ginsenósidos , Glutatión Peroxidasa , Glutatión Peroxidasa GPX1 , Proteínas Klotho , Losartán/farmacología , Trastornos de la Memoria , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno
7.
Int J Mol Sci ; 22(13)2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34281274

RESUMEN

It has been recognized that serotonin 2A receptor (5-HT2A) agonist 2,5-dimethoxy-4-iodo-amphetamine (DOI) impairs serotonergic homeostasis. However, the mechanism of DOI-induced serotonergic behaviors remains to be explored. Moreover, little is known about therapeutic interventions against serotonin syndrome, although evidence suggests that ginseng might possess modulating effects on the serotonin system. As ginsenoside Re (GRe) is well-known as a novel antioxidant in the nervous system, we investigated whether GRe modulates 5-HT2A receptor agonist DOI-induced serotonin impairments. We proposed that protein kinase Cδ (PKCδ) mediates serotonergic impairments. Treatment with GRe or 5-HT2A receptor antagonist MDL11939 significantly attenuated DOI-induced serotonergic behaviors (i.e., overall serotonergic syndrome behaviors, head twitch response, hyperthermia) by inhibiting mitochondrial translocation of PKCδ, reducing mitochondrial glutathione peroxidase activity, mitochondrial dysfunction, and mitochondrial oxidative stress in wild-type mice. These attenuations were in line with those observed upon PKCδ inhibition (i.e., pharmacologic inhibitor rottlerin or PKCδ knockout mice). Furthermore, GRe was not further implicated in attenuation mediated by PKCδ knockout in mice. Our results suggest that PKCδ is a therapeutic target for GRe against serotonergic behaviors induced by DOI.


Asunto(s)
Ginsenósidos/farmacología , Proteína Quinasa C-delta/metabolismo , Antagonistas de la Serotonina/farmacología , Síndrome de la Serotonina/prevención & control , Acetofenonas/farmacología , Anfetaminas/toxicidad , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Benzopiranos/farmacología , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Piperidinas/farmacología , Proteína Quinasa C-delta/deficiencia , Proteína Quinasa C-delta/genética , Inhibidores de Proteínas Quinasas/farmacología , Serotonina/fisiología , Agonistas de Receptores de Serotonina/farmacología , Síndrome de la Serotonina/inducido químicamente , Síndrome de la Serotonina/fisiopatología
8.
J Ginseng Res ; 44(3): 490-495, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32372871

RESUMEN

BACKGROUND: Ginsenoside Rk1, a saponin component isolated from heat-processed Panax ginseng Meyer, has been implicated in the regulation of antitumor and anti-inflammatory activities. Although our previous studies have demonstrated that ginsenoside Rg3 significantly attenuated the activation of NMDA receptors (NMDARs) in hippocampal neurons, the effects of ginsenosides Rg5 and Rk1, which are derived from heat-mediated dehydration of ginsenoside Rg3, on neuronal NMDARs have not yet been elucidated. METHODS: We examined the regulation of NMDARs by ginsenosides Rg5 and Rk1 in cultured rat hippocampal neurons using fura-2-based calcium imaging and whole-cell patch-clamp recordings. RESULTS: The results from our investigation showed that ginsenosides Rg3 and Rg5 inhibited NMDARs with similar potencies. However, ginsenoside Rk1 inhibited NMDARs most effectively among the five compounds (Rg3, Rg5, Rk1, Rg5/Rk1 mixture, and protopanaxadiol) tested in cultured hippocampal neurons. Its inhibition is independent of the NMDA- and glycine-binding sites, and its action seems to involve in an interaction with the polyamine-binding site of the NMDAR channel complex. CONCLUSION: Taken together, our results suggest that ginsenoside Rk1 might be a novel component contributable to the development of ginseng-based therapeutic treatments for neurodegenerative diseases.

9.
J Ginseng Res ; 43(4): 606-617, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31695567

RESUMEN

BACKGROUND: The Panax ginseng berry extract (GBE) is well known to have an antidiabetic effect. The aim of this study is to evaluate and investigate the protective effect of ultrasonication-processed P. ginseng berry extract (UGBE) compared with GBE on liver fibrosis induced by mild bile duct ligation (MBDL) model in rats. After ultrasonication process, the composition ratio of ginsenoside in GBE was changed. The component ratio of ginsenosides Rh1, Rh4, Rg2, Rg3, Rk1, Rk3, and F4 in the extract was elevated. METHODS: In this study, the protective effect of the newly developed UGBE was evaluated on hepatotoxicity and neuronal damage in MBDL model. Silymarin (150 mg/kg) was used for positive control. UGBE (100 mg/kg, 250 mg/kg, 500 mg/kg), GBE (250 mg/kg), and silymarin (150 mg/kg) were orally administered for 6 weeks after MBDL surgery. RESULTS: The MBDL surgery induced severe hepatotoxicity that leads to liver inflammation in rats. Also, the serum ammonia level was increased by MBDL surgery. However, the liver dysfunction of MBDL surgery-operated rats was attenuated by UGBE treatment via myeloid differentiation factor 88-dependent Toll-like receptor 4 signaling pathways. CONCLUSION: UGBE has a protective effect on liver fibrosis induced by MBDL in rats through inhibition of the TLR4 signaling pathway in liver.

10.
J Ginseng Res ; 42(4): 540-548, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30337815

RESUMEN

BACKGROUND: Acute hepatic failure is a life-threatening critical condition associated with rapid deterioration of liver function and liver transplantation. Several studies have shown that Panax ginseng Mayer has antidiabetic and hepatoprotective effects. However, the hepatoprotective effect of ginseng berry is still unveiled. In this study, we evaluated the hepatoprotective effects of ultrasonication-processed ginseng berry extract (UGBE) on acute hepatic failure model in rats. METHODS: Ginseng berry extract (GBE) was ultrasonically processed. The GBE, silymarin, and UGBE were orally administered to male Sprague-Dawley rats for 4 wk. Twenty-four h after the last administration, rats were challenged with D-galactosamine (D-GalN)/lipopolysaccharide (LPS). RESULTS: After ultrasonication, the component ratio of ginsenosides Rg2, Rg3, Rh1, Rh4, Rk1, Rk3, and F4 in GBE had been elevated. Administration of UGBE significantly increased the survival rate of D-GalN/LPS-challenged rats. Pretreatment with UGBE significantly decreased serum alanine aminotransferase, aspartate aminotransferase, and total bilirubin levels in D-GalN/LPS-challenged rats in a dose-dependent manner. The levels of enzymatic markers for oxidative stress (superoxide dismutase, glutathione peroxidase, catalase, and glutathione) were increased by UGBE treatment in a dose-dependent manner. Tumor necrosis factor alphalevel, inducible nitric oxide synthase activities, and nitric oxide productions were reduced by UGBE treatment. In addition, hemeoxygenase-1 levels in liver were also significantly increased in the UGBE-treated group. The protein expression of toll-like receptor 4 was decreased by UGBE administration. Hematoxylin and eosin staining results also supported the results of this study showing normal appearance of liver histopathology in the UGBE-treated group. CONCLUSION: UGBE showed a great hepatoprotective effect on D-GalN/LPS-challenged rats via the toll-like receptor 4 signaling pathway.

11.
J Neuroinflammation ; 15(1): 52, 2018 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-29467000

RESUMEN

BACKGROUND: We previously reported that ginsenoside Re (GRe) attenuated against methamphetamine (MA)-induced neurotoxicity via anti-inflammatory and antioxidant potentials. We also demonstrated that dynorphin possesses anti-inflammatory and antioxidant potentials against dopaminergic loss, and that balance between dynorphin and substance P is important for dopaminergic neuroprotection. Thus, we examined whether GRe positively affects interactive modulation between dynorphin and substance P against MA neurotoxicity in mice. METHODS: We examined changes in dynorphin peptide level, prodynorphin mRNA, and substance P mRNA, substance P-immunoreactivity, homeostasis in enzymatic antioxidant system, oxidative parameter, microglial activation, and pro-apoptotic parameter after a neurotoxic dose of MA to clarify the effects of GRe, prodynorphin knockout, pharmacological inhibition of κ-opioid receptor (i.e., nor-binaltorphimine), or neurokinin 1 (NK1) receptor (i.e., L-733,060) against MA insult in mice. RESULTS: GRe attenuated MA-induced decreases in dynorphin level, prodynorphin mRNA expression in the striatum of wild-type (WT) mice. Prodynorphin knockout potentiated MA-induced dopaminergic toxicity in mice. The imbalance of enzymatic antioxidant system, oxidative burdens, microgliosis, and pro-apoptotic changes led to the dopaminergic neurotoxicity. Neuroprotective effects of GRe were more pronounced in prodynorphin knockout than in WT mice. Nor-binaltorphimine, a κ-opioid receptor antagonist, counteracted against protective effects of GRe. In addition, we found that GRe significantly attenuated MA-induced increases in substance P-immunoreactivity and substance P mRNA expression in the substantia nigra. These increases were more evident in prodynorphin knockout than in WT mice. Although, we observed that substance P-immunoreactivity was co-localized in NeuN-immunreactive neurons, GFAP-immunoreactive astrocytes, and Iba-1-immunoreactive microglia. NK1 receptor antagonist L-733,060 or GRe selectively inhibited microgliosis induced by MA. Furthermore, L-733,060 did not show any additive effects against GRe-mediated protective activity (i.e., antioxidant, antimicroglial, and antiapoptotic effects), indicating that NK1 receptor is one of the molecular targets of GRe. CONCLUSIONS: Our results suggest that GRe protects MA-induced dopaminergic neurotoxicity via upregulatgion of dynorphin-mediated κ-opioid receptor and downregulation of substance P-mediated NK1 R.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Dinorfinas/metabolismo , Ginsenósidos/farmacología , Metanfetamina/toxicidad , Receptores de Neuroquinina-1/metabolismo , Receptores Opioides kappa/metabolismo , Sustancia P/metabolismo , Animales , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Antagonistas del Receptor de Neuroquinina-1/farmacología , Piperidinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
12.
Molecules ; 23(1)2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29301264

RESUMEN

The phytochemical study on the leaves of Acanthopanax gracilistylus (Araliaceae) resulted in the discovery of a new lupane-triterpene compound, acangraciligenin S (1), and a new lupane-triterpene glycoside, acangraciliside S (2), as well as two known ones, 3α,11α-dihydroxy-lup-20(29)-en-23,28-dioic acid (3) and acankoreoside C (4). Their chemical structures were elucidated by mass, 1D- and 2D-nuclear magnetic resonance (NMR) spectroscopy. The chemical structures of the new compounds 1 and 2 were determined to be 1ß,3α-dihydroxy-lup-20(29)-en-23, 28-dioic acid and 1ß,3α-dihydroxy-lup-20(29)-en-23,28-dioic acid 28-O-[α-l-rhamnopyranosyl-(1→4)-ß-d-glucopyranosyl-(1→6)-ß-d-glucopyranosyl] ester, respectively. The anti-neuroinflammatory activity of the selective compounds, 1 and 3, were evaluated with lipopolysaccharide (LPS)-induced BV2 microglia. The tested compounds showed moderate inhibitory effect of nitric oxide (NO) production.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Eleutherococcus/química , Triterpenos/química , Triterpenos/farmacología , Animales , Antiinflamatorios no Esteroideos/química , Evaluación Preclínica de Medicamentos/métodos , Lipopolisacáridos/farmacología , Espectroscopía de Resonancia Magnética , Ratones , Microglía/efectos de los fármacos , Microglía/metabolismo , Estructura Molecular , Óxido Nítrico/metabolismo , Hojas de la Planta/química
13.
Food Chem Toxicol ; 110: 300-315, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29037473

RESUMEN

We investigated whether ginsenoside Re (Re) modulates phencyclidine (PCP)-induced sociability deficits and recognition memory impairments to extend our recent finding. We examined the role of GPx-1 gene in the pharmacological activity of Re against mitochondrial dysfunction induced by PCP in the dorsolateral cortex of mice. Since mitochondrial oxidative stress activates NADPH oxidase (PHOX), we applied PHOX inhibitor apocynin for evaluating interactive modulation between GPx-1 and PHOX against PCP neurotoxicity. Sociability deficits and recognition memory impairments induced by PCP were more pronounced in GPx-1 knockout (KO) than in wild type (WT) mice. PCP-induced mitochondrial oxidative stress, mitochondrial dysfunction, and membrane translocation of p47phox were more evident in GPx-1 KO than in WT. Re treatment significantly attenuated PCP-induced neurotoxic changes. Re also significantly attenuated PCP-induced sociability deficits and recognition memory impairments. The attenuation by Re was comparable to that by apocynin. The attenuation was more obvious in GPx-1 KO than in WT. Importantly, apocynin did not show any additional positive effects on the neuroprotective activity of Re, indicating that PHOX is a molecular target for therapeutic activity of Re. Our results suggest that Re requires interactive modulation between GPx activity and PHOX (p47phox) to exhibit neuroprotective potentials against PCP insult.


Asunto(s)
Corteza Cerebral/enzimología , Ginsenósidos/administración & dosificación , Glutatión Peroxidasa/metabolismo , Mitocondrias/efectos de los fármacos , NADPH Oxidasas/metabolismo , Panax/química , Fenciclidina/efectos adversos , Sustancias Protectoras/administración & dosificación , Esquizofrenia/tratamiento farmacológico , Animales , Conducta Animal/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , NADPH Oxidasas/genética , Estrés Oxidativo/efectos de los fármacos , Esquizofrenia/enzimología , Esquizofrenia/genética , Psicología del Esquizofrénico , Glutatión Peroxidasa GPX1
14.
Neurochem Res ; 42(11): 3125-3139, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28884396

RESUMEN

Ginseng (Panax ginseng), an herbal medicine, has been used to prevent neurodegenerative disorders. Ginsenosides (e.g., Re, Rb1, or Rg1) were obtained from Korean mountain cultivated ginseng. The anticonvulsant activity of ginsenoside Re (20 mg/kg/day × 3) against trimethyltin (TMT) insult was the most pronounced out of ginsenosides (e.g., Re, Rb1, and Rg1). Re itself did not significantly alter tumor necrosis factor-α (TNF-α), interferon-ϒ (IFN-ϒ), and interleukin-1ß (IL-1ß) expression, however, it significantly increases the interleukin-6 (IL-6) expression. In addition, Re attenuated the TMT-induced decreases in IL-6 protein level. Therefore, IL-6 knockout (-/-) mice were employed to investigate whether Re requires IL-6-dependent neuroprotective activity against TMT toxicity. Re significantly attenuated TMT-induced lipid peroxidation, protein peroxidation, and reactive oxygen species in the hippocampus. Re-mediated antioxidant effects were more pronounced in IL-6 (-/-) mice than in WT mice. Consistently, TMT-induced increase in c-Fos-immunoreactivity (c-Fos-IR), TUNEL-positive cells, and nuclear chromatin clumping in the dentate gyrus of the hippocampus were significantly attenuated by Re. Furthermore, Re attenuated TMT-induced proapoptotic changes. Protective potentials by Re were comparable to those by recombinant IL-6 protein (rIL-6) against TMT-insult in IL-6 (-/-) mice. Moreover, treatment with a phosphoinositol 3-kinase (PI3K) inhibitor, LY294002 (1.6 µg, i.c.v) counteracted the protective potential mediated by Re or rIL-6 against TMT insult. The results suggest that ginsenoside Re requires IL-6-dependent PI3K/Akt signaling for its protective potential against TMT-induced neurotoxicity.


Asunto(s)
Ginsenósidos/farmacología , Interleucina-6/deficiencia , Fármacos Neuroprotectores/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Compuestos de Trimetilestaño/toxicidad , Animales , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Panax , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Compuestos de Trimetilestaño/antagonistas & inhibidores
15.
Planta Med ; 83(17): 1342-1350, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28561205

RESUMEN

Panax ginseng is the most widely used herbal medicine for improving cognitive functions. The pharmacological activity and underlying mechanisms of mountain-cultivated ginseng, however, have yet to be clearly elucidated, in particular, against trimethyltin-induced cognitive dysfunction. We previously reported that interleukin-6 plays a protective role against trimethyltin-induced cognitive dysfunction. Because of this, we have implemented a study system that uses interleukin-6 null (-/-) and wild-type mice. Interestingly, mountain-cultivated ginseng significantly upregulated interleukin-6 expression. With this study, we sought to determine whether the interleukin-6-dependent modulation of the Janus kinase 2/signal transducer activator of transcription 3 and extracellular signal-regulated kinase signaling network is also associated with the pharmacological activity of mountain-cultivated ginseng against trimethyltin-induced cognitive dysfunction. Trimethyltin treatment (2.4 mg/kg, intraperitoneal) causes the downregulation of Janus kinase 2/signal transducer activator of transcription 3, extracellular signal-regulated kinase signaling, and impairment of the cholinergic system. We found that mountain-cultivated ginseng treatment (50 mg/kg, intraperitoneal) significantly attenuated cognitive impairment normally induced by trimethyltin by upregulating p-Janus kinase 2/signal transducer activator of transcription 3, p-extracellular signal-regulated kinase signaling, and the cholinergic system. Trimethyltin-induced cognitive impairments were more pronounced in interleukin-6 (-/-) mice than wild-type mice, and they were markedly reduced by treatment with either mountain-cultivated ginseng or recombinant interleukin-6 protein (6 ng, intracerebroventricular). Additionally, treatment with either AG490 (20 mg/kg, intraperitoneal), a Janus kinase 2/signal transducer activator of transcription 3 inhibitor, or U0126 (2 µg/head, intracerebroventricular), an extracellular signal-regulated kinase inhibitor, reversed the effects of mountain-cultivated ginseng treatment. The effects of mountain-cultivated ginseng treatment were comparable to those of recombinant interleukin-6 protein in interleukin-6 (-/-) mice. Our results, therefore, suggest that mountain-cultivated ginseng acts through interleukin-6-dependent activation of Janus kinase 2/signal transducer activator of transcription 3/extracellular signal-regulated kinase signaling in order to reverse cognitive impairment caused by trimethyltin treatment.


Asunto(s)
Disfunción Cognitiva/tratamiento farmacológico , Interleucina-6/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Panax , Fitoterapia , Animales , Disfunción Cognitiva/inducido químicamente , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Interleucina-6/genética , Janus Quinasa 2/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Panax/química , Panax/crecimiento & desarrollo , Filogeografía , Factor de Transcripción STAT3/metabolismo , Compuestos de Trimetilestaño , Regulación hacia Arriba/efectos de los fármacos
16.
J Neuroinflammation ; 14(1): 94, 2017 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-28449688

RESUMEN

BACKGROUND: Ginkgo biloba has been reported to possess free radical-scavenging antioxidant activity and anti-inflammatory properties. In our pilot study, YY-1224, a terpene trilactone-strengthened extract of G. biloba, showed anti-inflammatory, neurotrophic, and antioxidant effects. RESULTS: We investigated the pharmacological potential of YY-1224 in ß-amyloid (Aß) (1-42)-induced memory impairment using cyclooxygenase-2 (COX-2) knockout (-/-) and APPswe/PS1dE9 transgenic (APP/PS1 Tg) mice. Repeated treatment with YY-1224 significantly attenuated Aß (1-42)-induced memory impairment in COX-2 (+/+) mice, but not in COX-2 (-/-) mice. YY-1224 significantly attenuated Aß (1-42)-induced upregulation of platelet-activating factor (PAF) receptor gene expression, reactive oxygen species, and pro-inflammatory factors. In addition, YY-1224 significantly inhibited Aß (1-42)-induced downregulation of PAF-acetylhydrolase-1 (PAF-AH-1) and peroxisome proliferator-activated receptor γ (PPARγ) gene expression. These changes were more pronounced in COX-2 (+/+) mice than in COX-2 (-/-) mice. YY-1224 significantly attenuated learning impairment, Aß deposition, and pro-inflammatory microglial activation in APP/PS1 Tg mice, whereas it significantly enhanced PAF-AH and PPARγ expression. A preferential COX-2 inhibitor, meloxicam, did not affect the pharmacological activity by YY-1224, suggesting that the COX-2 gene is a critical mediator of the neuroprotective effects of YY-1224. The protective activity of YY-1224 appeared to be more efficacious than a standard G. biloba extract (Gb) against Aß insult. CONCLUSIONS: Our results suggest that the protective effects of YY-1224 against Aß toxicity may be associated with its PAF antagonistic- and PPARγ agonistic-potential as well as inhibition of the Aß-mediated pro-inflammatory switch of microglia phenotypes through suppression of COX-2 expression.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Ciclooxigenasa 2/metabolismo , Ginkgo biloba , Enfermedades Neurodegenerativas/metabolismo , Fragmentos de Péptidos/toxicidad , Extractos Vegetales/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/biosíntesis , Precursor de Proteína beta-Amiloide/genética , Animales , Expresión Génica , Lactonas/aislamiento & purificación , Lactonas/uso terapéutico , Ratones , Ratones Noqueados , Ratones Transgénicos , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/prevención & control , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Presenilina-1/biosíntesis , Presenilina-1/genética , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Terpenos/aislamiento & purificación , Terpenos/uso terapéutico
17.
J Ginseng Res ; 40(4): 334-343, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27746685

RESUMEN

BACKGROUND: Progressed tissue culture techniques have allowed us to easily obtain mass products of tissue-cultured mountain ginseng over 100 yr old (TCMG-100). We investigated the effects of TCMG-100 extract on erectile function using in vitro and in vivo studies. METHODS: To examine the relaxation effects and mechanisms of action of TCMG-100 on rabbit cavernosal strips evaluated in an organ bath. To investigate the long-term treatment effect of TCMG-100, 8-wk administration was performed. After administration of TCMG-100, intracavernosal pressure, cyclic guanosine monophosphate and nitric oxide (NO) levels of cavernosal tissue, serum testosterone level, histological observation of collagen fiber, endothelium, smooth muscle cell, and transforming growth factor-ß1 were investigated. RESULTS: TCMG-100 extract displayed dose-dependent relaxation effects on precontracted rabbit corporal smooth muscle. The TCMG-100-induced relaxation was significantly reduced by removing the endothelium, and treatment with an NO synthase inhibitor or NO scavenger. Eight weeks of TCMG-100 administration increased intracavernosal pressure in a rat model. The levels of cyclic guanosine monophosphate and NO in the corpus callosum and serum testosterone level were also increased by TCMG-100 treatment. Furthermore, histological evaluation of collagen, smooth muscle, and endothelium showed increases in endothelium and smooth muscle, and a decrease in transforming growth factor-ß1 expression. CONCLUSION: These relaxation effects on corporal smooth muscle and increased erectile function suggest that TCMG-100 might be used as an alternative herbal medicine to improve erectile function.

18.
J Ginseng Res ; 40(3): 300-3, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27616907

RESUMEN

The result of USRG-12 indicated that ultrasonication-processed (100°C, 12 h) red ginseng extracts had the highest amount of ginsenosides Rg3 (0.803%), Rg5 (0.167%), and Rk1 (0.175%).

19.
J Med Food ; 19(10): 961-969, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27668757

RESUMEN

Escalating evidence indicates that ginseng treatment protects against psychotoxic behaviors and memory impairment. Although the underlying mechanism of schizophrenia remains elusive, recent investigations proposed that downregulation of glutathione (GSH) can be involved in the pathogenesis of this disorder. Since little is known about the effects of ginseng in a schizophrenia-like animal model, we selected mountain-cultivated ginseng (MG) from a variety of ginseng extracts to investigate the effect of ginseng on the psychosis induced by phencyclidine (PCP) in mice. PCP (10 mg/kg/day, s.c.) was administered for 14 consecutive days. Novel object recognition, forced swimming, and social interaction tests were performed during the withdrawal period of 7 days. In addition, behavioral sensitization to an acute challenge of PCP was evaluated. The parameters of the GSH-dependent system in the prefrontal cortex (PFC) were examined. MG (200 mg/kg, i.p./day) or antipsychotic clozapine (10 mg/kg, p.o./day) was administered for seven consecutive days after the final PCP treatment. PCP significantly produced abnormal behaviors, followed by increases in Nrf2 nuclear translocation, its DNA binding activity, and glutamate-cysteine ligase (GCL) mRNA expression in the PFC. PCP treatment significantly decreased GSH/glutathione disulfide (GSSG) ratio and glutathione peroxidase (GPx) activity. MG significantly attenuated abnormal behaviors and the decreases in GSH/GSSG ratio and GPx activity induced by PCP. MG attenuated the increases in Nrf2 activity and GCL expression caused by PCP. The protective potentials of MG were comparable to those of clozapine. MG ameliorates PCP-induced schizophrenia-like psychosis in mice through the positive modulation of the glutathione system.

20.
Arch Pharm Res ; 39(9): 1313-23, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27393666

RESUMEN

The effects of ceremide analogues on esophagitis and gastritis in rats were examined. Gastritis induced by indomethacin was significantly reduced after CY3325 and CY3723 treatment, whereas other analogues had no effect. The amount of malondialdehyde in gastritis was significantly reduced by CY3325 or CY 3723. CY3325 or CY 3723 decreased the glutathione levels in gastritis. The myeloperoxidase level in gastritis is increased, and its increment was decreased by CY3325 and CY3723. In reflux esophagitis, the ulceration was decreased by CY3325, CY3723. The gastric volume and acid output are reduced, whereas the pH value is increased by CY3325 or CY3723 after esophagitis. These results suggest that ceramide analogues, CY3325 and CY3723, can prevent the development of gastritis and reflux esophagitis in rats.


Asunto(s)
Ceramidas/química , Ceramidas/uso terapéutico , Esofagitis/tratamiento farmacológico , Gastritis/tratamiento farmacológico , Animales , Relación Dosis-Respuesta a Droga , Esofagitis/patología , Gastritis/patología , Masculino , Ratas , Ratas Sprague-Dawley , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...